Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Xiu-Wen Li, Zhang-Lan Qin* and Ting Wan

Department of Chemistry, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China

Correspondence e-mail: mingmou2289@tom.com

Key indicators

Single-crystal X-ray study T = 292 KMean $\sigma(\text{C}-\text{C}) = 0.002 \text{ Å}$ R factor = 0.051 wR factor = 0.149 Data-to-parameter ratio = 15.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

4-Benzoylhydrazono-1,4-dihydroquinazoline monohydrate

In the crystal structure of the title compound, $C_{15}H_{12}N_4O \cdot H_2O$, molecules are linked by $N-H \cdot \cdot \cdot O$ hydrogen bonds and $\pi-\pi$ and $C-H \cdot \cdot \cdot \pi$ interactions.

Received 17 March 2006 Accepted 2 April 2006

Comment

The quinazoline ring system is found widely in alkaloids and many biologically active compounds which find uses as fungicides, anti-inflammatory, anticancer, antimicrobial and antihypertensive agents (Alexandre *et al.*, 2003; Cobb *et al.*, 1999). Here we report the crystal structure of 4-(benzoylhydrazono)-1,4-dihydroquinazoline as its monohydrate, (I) (Fig. 1).

The structure of (I) shows the quinazoline ring system and benzamido groups to be linked through a C=N double bond. The dihedral angle between the quinazoline unit and the phenyl ring is 20.1 (1)°. Selected bond lengths are given in Table 1. The crystal structure exhibits both π - π and C-H- π interactions (Table 1 and Fig. 2). The distance between the centroids of parallel pairs of quinazoline ring systems, related by inversion centers, is 3.652 (1) Å; the perpendicular distance is 3.455 (1) Å. Hydrogen bonding is also observed, further strengthening the crystal structure (Table 2).

Experimental

The title compound, (I), was prepared according to the procedure of Liu & Song (2004). Crystals suitable for X-ray diffraction were obtained by vapor diffusion of dioxane into a dimethylformamide solution at room temperature (m.p. 519 K). Analysis calculated for $C_{15}H_{14}N_4O_2$: C 63.82, H 5.00, N 19.85%; found: C 62.79, H 5.01, N 19.87%.

Crystal data

 $\begin{array}{l} C_{15}H_{12}N_4O \cdot H_2O\\ M_r = 282.30\\ Monoclinic, C2/c\\ a = 16.9865 (14) \text{ Å}\\ b = 7.2085 (6) \text{ Å}\\ c = 22.1444 (18) \text{ Å}\\ \beta = 92.0220 (10)^\circ\\ V = 2709.8 (4) \text{ Å}^3 \end{array}$

Z = 8 $D_x = 1.384 \text{ Mg m}^{-3}$ Mo K α radiation $\mu = 0.10 \text{ mm}^{-1}$ T = 292 (2) K Block, yellow $0.20 \times 0.20 \times 0.10 \text{ mm}$

© 2006 International Union of Crystallography All rights reserved

organic papers

Data collection

Bruker SMART APEX CCD areadetector diffractometer ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 2003) $T_{min} = 0.972, T_{max} = 0.981$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.051$ $wR(F^2) = 0.150$ S = 1.05 3091 reflections 202 parameters H atoms treated by a mixture of independent and constrained refinement 15045 measured reflections 3091 independent reflections 2643 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.064$ $\theta_{\text{max}} = 27.5^{\circ}$

$$\begin{split} w &= 1/[\sigma^2(F_o^2) + (0.0936P)^2 \\ &+ 0.5569P] \\ \text{where } P &= (F_o^2 + 2F_c^2)/3 \\ (\Delta/\sigma)_{\text{max}} < 0.001 \\ \Delta\rho_{\text{max}} &= 0.31 \text{ e } \text{\AA}^{-3} \\ \Delta\rho_{\text{min}} &= -0.32 \text{ e } \text{\AA}^{-3} \end{split}$$

Figure 1

The molecular structure of (I), showing the atom labeling and 50% probability ellipsoids for the non-H atoms.

Table 1

Selected bond lengths (Å).

C6-N1	1.3853 (17)	C9-O1	1.2344 (16)
C7-N2	1.2972 (18)	C9-N4	1.3331 (17)
C7-N1	1.3320 (17)	C9-C10	1.4969 (17)
C8-N3	1.2976 (16)	N3-N4	1.3858 (14)
C8-N2	1.3885 (16)		

Table	2
-------	---

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N4-H4A\cdots N2$	0.86(1)	2.12 (2)	2.5526 (15)	111 (1)
$O2-H2B\cdots O1$	0.83 (1)	2.08 (1)	2.9071 (18)	174 (2)
$O2-H2A\cdots N3^{i}$	0.83 (1)	2.36 (1)	3.1400 (15)	158 (2)
$O2-H2A\cdots O1^{i}$	0.83 (1)	2.31 (2)	2.9048 (15)	130 (2)
$N1 - H1 \cdots O2^{ii}$	0.86 (1)	2.01(1)	2.8524 (16)	168 (2)
$C12-H12\cdots Cg1^{iii}$	0.93	2.78	3.522 (2)	138
	a) . 1		(11)	

Symmetry codes: (i) $-x + \frac{1}{2}, -y + \frac{3}{2}, -z + 1$; (ii) -x, -y + 2, -z + 1; (iii) $x, -y - 1, z - \frac{1}{2}$. *Cg*1 is the centroid of atoms C10–C15.

All aromatic H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C-H = 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$. The N and the water H atoms were located in a difference map, and were refined with the constraints N-H = 0.86 (1) Å and O-H = 0.82 (1) Å. The U_{iso} values were set at 1.2 and 1.5 times U_{eq} of their carrier atoms for H4A and water H atoms, respectively.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT-Plus* (Bruker, 2001); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *PLATON* (Spek, 2003); software used to prepare material for publication: *PLATON*.

The authors acknowledge financial support from the Science Foundation of Hubei Province (grant No. 99 J059).

Figure 2

Plot of the crystal packing, showing the formation of chains. Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted.

References

- Alexandre, F.-R., Berecibar, A., Wrigglesworth, R. & Besson, T. (2003). *Tetrahedron*, 59, 1413–1419.
- Bruker (2001). SAINT-Plus (Version 6.45) and SMART (Version 5.628). Bruker AXS Inc., Madison, Wisconsin, USA.
- Cobb, J. M., Fiorini, M. T., Goddard, C. R., Theoclitou, M.-E. & Abell, C. (1999). Tetrahedron Lett. 40, 1045–1048.
- Liu, G. & Song, B. A. (2004). Chin. Org. Chem. 10, 1296-1299.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (2003). SADABS. Version 2.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.